A classical interpretation of the wave function collapse

Quantum mechanics assumes that a particle is in a superposition of several states or positions based on the mathematical properties of Schrödinger’s wave equation before an observation is made.  It also assumes that when it is observed it collapses resulting the particle it represents having a single or unique position. When the Copenhagen interpretation was … Read more

Solving the Measurement Problem

The measurement problem in quantum mechanics is the unresolved problem of how (or if) wavefunction collapse occurs.  The inability to observe this process directly has given rise to different interpretations of quantum mechanics, and poses a key set of questions that each interpretation must answer.  The wavefunction in quantum mechanics evolves according to the Schrödinger … Read more

Quantum entanglement: A Classical non-locality

Quantum entanglement is the name that describes the way that particles can share information and interact with each other regardless of how far apart they are. For example an electron in certain atoms will spontaneously decay after being excited by emitting pairs of polarized photons such that one is aligned horizontally the other vertically.  According … Read more