Presently, there is disconnect between our understanding of one of the most mysterious facets of quantum mechanics quantum, that of quantum entanglement and the classical one of separation.

Entanglement occurs when two particles are linked together no matter their separation from one another. Quantum mechanics assumes even though these entangled particles are not physically connected, they still are able to interact or share information with each other instantaneously.

Many believe this means the universe does not live by the law’s classical laws of separation or those derived by Einstein which stated that no information can be transmitted faster than the speed of light.

However, we must be careful not to jump to conclusions because Einstein gave us the definitive answer as to how and why particles are entangled in terms of the physical properties of space-time.

Quantum mechanics assumes that entanglement occurs when two particles or molecules share on a quantum level one or more properties such as spin, polarization, or momentum. This connection persists even if you move one of the entangled objects far away from the other. Therefore, when an observer interacts with one the other is instantly affected.

There is irrefutable experimental evidence the act of measuring the state of one of a pair of particles can instantaneously effect another even though they are physically separated from each other.

However, before we come to the conclusion it is a result of their quantum mechanical properties, we should first examine the experimental setup and any variables that may allow us to come to a different conclusion.

In quantum physics, it is assumed entangled particles remain connected so that actions performed on one immediately affect the other, even when separated by great distances. The rules of Quantum physics also state that an unobserved photon exists in all possible states simultaneously but, when observed or measured, exhibits only one state.

One of the experiments that many assume verifies that entanglement is a quantum phenomenon uses (This description was obtained from the Live Science web site) a laser beam fired through a certain type of crystal which causes individual photons to be split into pairs of entangled photons. The photons can be separated by a large distance, hundreds of miles or even more. When observed, Photon A takes on an up-spin state. Entangled Photon B, though now far away, takes up a state relative to that of Photon A (in this case, a down-spin state). The transfer of state (or information) between Photon A and Photon B takes place at a speed of at least 10,000 times the speed of light, possibly even instantaneously, regardless of distance. Scientists have successfully demonstrated quantum entanglement with photos, electrons, molecules of various sizes, and even very small diamonds.

However, Einstein told us there are no preferred reference frames by which one can measure distance.

Therefore he tells the distance between the observational points in a laboratory, can also be defined from the perspective of the photons in the above experiment.

Yet, this tell us (Please see attached graphic) that the separation between the observation points in a laboratory from the perspective of two photons moving at the speed of light would be ZERO no matter how far apart they might be from the perspective of an observer in that laboratory. This is because, as was just mentioned according to the concepts of Relativity one can view the photons as being stationary and the observers as moving at the velocity of light.

Therefore, according to Einstein’s theory all photons which are traveling at the speed of light are entangled no matter how far they may appear to be from the perspective of an observer who is looking at them.

In other words, entanglement of photons can be explained and predicted terms of the relativistic properties of space-time as defined by Einstein as well as by quantum mechanics.

One way of determining if this is correct would be to determine if particles which were NOT moving at the speed of light experience entanglement over the same distances as photon which are.

This is because, the degree of relativistic shortening of the distance between the end points of the observations of two particle is dependent on their velocity with respect to the laboratory were they are being observed.

Therefore, all photons no matter how far apart they are from the perspective of a lab will be entangled because Einstein tells due to the fact that they are moving at the speed of light that distance will be Zero from their perspective.

However, he also tells us that for particles moving slower than the speed of light the distance between will be greater than zero and how much more would depend on their the relative speed with respect to it. In other words, the slower with respect to the lab they are moving the less that distance will be shortened.

Therefore, if it was found that only photons experience entanglement when the observation points were separated by large distances it would support the idea that it is caused by the relativistic properties of space defined by Einstein.

However, one must remember the wave particle duality of existence as defined by Quantum mechanics tell us that before a particle is observed it has an extended length equal due to its wavelength. Therefore, all particles will be entangled if the reduction in length between the endpoints of the observations when adjusted with respect to their relative velocity is less their wave length as defined by quantum mechanics.

A more conclusive argument could be made for the idea that entanglement is a result of the relativistic properties of space if it was found that entanglement ceased when the relativistic distance between the end points of observation when viewed from the perspective of particle moving slower than the speed of light was greater than its wavelength as defined by quantum mechanics.

Some have suggested that “There are inertial frames for every speed less than light – speaking informally – but there is no inertial frame for light speed itself. Any attempt to generate one actually generates a degenerate frame which can cover only an infinitesimal fraction of space-time.” However the argument that there are “There are inertial frames for every speed less than light”

because they would create an infinitesimal fraction of space-time is invalid, because Special Relativity WITHOUT EXCEPTION defines an inertial frame reference as one which is not undergoing acceleration. Therefore, even though using a photon as a reference frame may create infinitesimal 2 dimensional fraction of space-time the conceptual foundations formulas for length contractions of reference frames in relative motion define by Einstein tells us that one can exist. One reason that all of the mass which is contained in it is not undergoing acceleration.Therefore, the fact that it may define a degenerate frame would be irrelevant to the conclusion draw above because as that post showed it is the distance between the end points of the observation when viewed from a photon that determines whether or not it will be entangled.

Copyright Jeffrey O’Callaghan 2020

Please visit our Facebook group The Road to unification of Quantum and Relativistic theories if you would like to comment or contribute to our project*e*

The Road to Unifying | The Road to Unifying | The Road to Unifying |

Richard Feynman the farther of Quantum Electrodynamics believed Thomson’s double slit experiment provided a mechanism for understanding the wave particle duality of energy/mass because it clearly demonstrates their inseparability and provides a mechanisms for understanding how it is propagated through space.

The wave-particle duality postulates that all particles exhibit both wave and particle properties. A central concept of quantum mechanics, this duality addresses the inability of classical concepts like "particle" and "wave" to fully describe the behavior of quantum-scale objects. Standard interpretations of quantum mechanics explain this paradox as a fundamental property of the Universe, while alternative interpretations explain the duality as an emergent, second-order consequence of various limitations of the observer.

*The reason the above-mentioned experiment is so important is because it ***provides a mechanism for understanding how electromagnetic energy is propagated and why the particle wave dually exists purely in terms of Einstein’s Theory of Relativity. **

But before we begin, we must first understand how the electromagnetic wave component of a particle’s duality is propagated through space and time.

**One of the difficulties involved in doing so is that we define its movement though space in terms Maxwell’s equations which are based on the interaction between its electric and magnetic components with respect to time not space. This presents a problem because the particle component of its duality must always be defined by its spatial position when observed. Therefore, to understand how they are related we should attempt to define its movement through space and time in term of its spatial properties.**

Einstein gave us the ability to do this purely in terms spatial properties of its electromagnetic wave components when he used the constant velocity of light to defined the geometric properties of space-time because it allows one to convert a unit of time in his space-time universe to an equivalent unit of space in an environment consisting of only four *spatial* dimensions. Additionally, because the velocity of light is constant it is possible to defined a one to one correspondence between his space-time universe and one made up of four *spatial* dimensions.

In other words, by mathematically defining the geometric properties of a space-time universe in terms of the constant velocity of light he provided a qualitative and quantitative means of redefining his space-time universe in terms of the geometry of four *spatial* dimensions.

This gives one the ability to derive the properties of an electromagnetic wave and understand its movement in terms of the spatial displacement that would be created by its observed transverse wave characteristics.

For example, a transverse wave on the two-dimensional surface of water moves through water because it causes a point on that surface to be become displaced or rise above or below the equilibrium point that existed before the wave was present. A force is developed by the differential displacement of the surfaces, which will result in the elevated and depressed portions of the water moving towards or become "attracted" to each other and the surface of the water. This results in a wave to move on the surface of the water.

Similarly, an energy wave on the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension would cause a point on that "surface" to become displaced or rise above and below the equilibrium point that existed before the wave was present. This would result a wave moving on the "surface" of three-dimensional space.

Therefore, classical wave mechanics, if extrapolated to four *spatial* dimensions tells us a force will be developed by the differential displacements caused by an energy wave moving on a "surface" of three-dimensional space with respect to a fourth *spatial* dimension that will result in its elevated and depressed portions moving towards or become "attracted" to each other causing it to move through space.

This defines the causality of the attractive forces of unlike charges associated with the electromagnetic wave component of a photon in terms of a force developed by a differential displacement of a point on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

However, it also provides a classical mechanism for understanding why similar charges repel each other because observations of water show that there is a direct relationship between the magnitudes of a displacement in its surface to the magnitude of the force resisting that displacement.

Similarly, the magnitude of a displacement in a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension caused by two similar charges will be greater than that caused by a single one. Therefore, similar charges will repel each other because the magnitude of the force resisting the displacement will be greater for two charges than it would be for a single charge.

One can also define the directionality of electrical component of electromagnetic energy in terms of the energy associated with its "peaks" and "troughs" that is directed perpendicular to its velocity vector while its magnetic component would be associated with the horizontal force developed by that perpendicular displacement because classical Mechanics tells us a horizontal force will be developed by that displacement which will always be 90 degrees out of phase with it. This force is called magnetism.

This is analogous to how the vertical force pushing up of on mountain also generates a horizontal force, which pulls matter horizontally towards the apex of that displacement.

*However, this means that one can define a physical model for the propagation of an electromagnetic field in terms of Einstein’s space-time theory because, as was shown above* when he mathematically defined its geometric properties in terms of the constant velocity of light he provided a qualitative and quantitative means of redefining his theory in terms of the geometry of four *spatial* dimensions.

*Yet, viewing it in terms of its spatial components also allows one to understand the mechanism responsible for the wave particle duality of a photon as observed in the Thomson’s double slit experiment and why*** electromagnetic energy always presents itself as a particle when it strikes the detector in the that experiment.**

For example, the article, "Why is energy/mass quantized?" Oct. 4, 2007 showed that one can use the Einsteinâ€™s theories to explain the quantum mechanical properties of an electromagnetic wave by extrapolating the rules of classical resonance in a three-dimensional environment to an energy wave moving on â€œsurfaceâ€ of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in an energy wave moving in four *spatial* dimensions.

The existence of four *spatial* dimensions would give the energy wave associated with a photon the ability to oscillate spatially on a "surface" between a third and fourth *spatial* dimensions thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital would force the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension to oscillate with the frequency associated with the energy of that event.

However, the oscillations caused by such an event would serve as forcing function allowing a resonant system or "structure" to be established in four *spatial* dimensions.

As was shown in that article these resonant systems in four *spatial* dimensions are responsible for the particle called a photon.

However, one can also use Einstein space-time theories when viewed in their spatial equivalent to explain how the boundaries of the standing wave responsible for creating the resonant system that article indicated was responsible of a particles formation are created.

In classical physics a standing wave is created when the vibrational frequency of a source causes reflected waves from one end of a confined medium to interfere with incident waves from the source. This interference of the wave energy causes their peaks troughs to be reinforce in the volume they are occupying thereby creating a standing wave.

The confinement required to create a standing wave in space-time or its equivalent in four *spatial* dimensions can be understood by comparing it to the confinement a point on the two-dimensional surface of paper experiences when oscillating with respect to three-dimensional space. The energy associated with the wave motion of that point would be confined to its two-dimensional surface and would be reflected and interfere with the incident wave when reaches three-dimensional space at its edge. Therefore, a standing would be created by its interaction with three-dimensional space.

In other words, when a wave on the surface of a piece of paper encounters the third *spatial* dimension at its edge it is reflected back allowing a standing wave to be formed on its surface.

**Similarly, an electromagnetic wave moving on the surface of three-dimensional space would be confined to it and reflected back to that volume, similar to the surface of the paper if it was prevented from oscillating with respect to a four *spatial* dimensions or four-dimensional space-time.**

In other words, the interference caused by the confinement of an electromagnetic wave to three-dimensional space, which is caused by it striking the detection screen in the * Thomson’s double slit* experiment results in the resonant standing wave to be formed in space called a photon.

That experiment is made up of "A coherent source of photons illuminating a screen after passing through a thin plate with two parallel slits cut in it. The wave nature of light causes it wave component to interfere after passing through both slits, creating an interference pattern of bright and dark bands on the screen. However, at the screen, the light "is always found to be absorbed as discrete particles, called photons".

When only one slit is open, the pattern on the screen is a diffraction pattern however, when both slits are open, the pattern is similar but with much more detail. These facts were elucidated by Thomas Young in a paper entitled "Experiments and Calculations Relative to Physical Optics," published in 1803. To a very high degree of success, these results could be explained by the method of Huygen ‘s Fresnel principle that is based on the hypothesis that light consists of waves propagated through some medium. However, discovery of the photoelectric effect made it necessary to go beyond classical physics and take the quantum nature of light into account.

However, the most baffling part of this experiment comes when only one photon at a time impacts a barrier with two opened slits because an interference pattern forms which is similar to what it was when multiple photons were impacting the barrier. This is a clear implication the particle called a photon has a wave component, which simultaneously passes through both slits and interferes with itself. (The experiment works with electrons, atoms, and even some molecules too.)"

Even more puzzling is why any attempts to measure which slit that electron passed through cause the interference pattern to disappear.

**Yet, as mentioned earlier one can derive the outcome of this experiment by assuming that electromagnetic energy is propagated by a wave on the "surface" of a three-dimensional space manifold with respect to a fourth spatial dimension instead of four-dimensional space-time**

For example, the reason why the interference patterns remain when only one photon at a time is fired at the barrier with both slits open or "the most baffling part of this experiment" is because, as was just shown it has an extended spatial volume which is directly related to the wavelength.

This means a portion of its energy can simultaneously pass both slits, if the diameter of its volume exceeds the separation of the slits and recombine on the other side to generate an interference pattern.

Additionally, one can also explain why the interference pattern disappears when a detector is added to determine which slit a photon has passed through. The energy required to measure which slit it passes through interacts with it causing the wavelength of that portion to change so that it will not have the same resonant characteristics as one that passed through the other slit Therefore, the energy passing thought that slit will not be able to interact, with the energy passing through the other one to form an interference pattern on the screen.

However, as was shown earlier one can also show the reason the interference pattern appears as a particle when electromagnetic wave contacts a detection screen is because striking it results in it being confined to three-dimensional space instead of four-dimensional space-time or four spatial dimensions, thereby creating a standing wave in either four spatial dimensions or four dimensional space-time to be created.

**In other words, it clearly shows the reason all forms of energy exhibit both wave and particle properties are because they are physically made up of waves in terms of Einstein’s Theory of Relativity. **

The above discussion shows that Richard Feynman was right in assuming that Thomson’s double slit experiment provided a mechanism for understanding the wave particle duality of energy/mass because it clearly demonstrates their inseparability.

Additionally, it also provides an explanation how and why energy is propagated through space because it shows the quantum mechanical and wave properties of energy displayed in the double slit experiment can be understood if one assumes they are made up of a resonant system in a moving in a four dimensional space-time manifold or on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension in terms Einstein theories.

**It should be remembered that Einstein’s genius allows us to choose whether to define an electromagnetic wave either a space-time environment or one consisting of four *spatial* dimension when he defined its geometry in terms of the constant velocity of light.**

Later Jeff

Copyright Jeffrey O’Callaghan 2020

The Road to Unifying | The Road to Unifying | The Road to Unifying |

15

Maxwell defined the propagation of an electromagnetic wave in terms of a field consisting of both electric and magnetic components which continuously interact with each other, forming an electromagnetic wave.

While Quantum Field Theory defines an electromagnetic field in terms of **discrete parcels of energy **while avoiding the question as to how it moves through space.

A*dditionally, it cannot explain in terms of a physical model and why an electromagnetic wave always without exception becomes a particle when observed. *

*E instein also had a problem of deriving its electromagnetic properties and how they moved through space in terms of a physical model based on his gravitational theories as was documented by the American Institute of Physics .*

*“From before 1920 until his death in 1955, Einstein struggled to find laws of physics far more general than any known before. In his theory of relativity, the force of gravity had become an expression of the geometry of space and time. The other forces in nature, above all the force of electromagnetism, had not been described in such terms. But it seemed likely to Einstein that electromagnetism and gravity could both be explained as aspects of some broader mathematical structure. The quest for such an explanation ” for a unified field theory that would unite electromagnetism and gravity, space and time, all together â€” occupied more of Einstein’s years than any other activity. *

*However, one of the difficulties in understanding the similarities between electromagnetic forces and gravity is that we define its movement though space in terms of an interaction between its electric and magnetic components with respect to time while we define the magnitude of gravitational forces in terms of the physical distance between two bodies.*

*Therefore, to understand a physical connection between them we should define the interaction of the forces associated with an electromagnetic* wave in in terms of distance as we do with gravity.

Einstein gave us the ability to do this when he used the constant velocity of light and the equation E=mc^2 to define geometric properties of forces in a space-time environment because it allows one to convert a unit of time in his four-dimensional space-time universe to a unit of space in a universe consisting of only four *spatial* dimensions. Additionally, because the velocity of light is constant it is possible to define a one to one correspondence between his space-time universe and one made up of four *spatial* dimensions.

*In other words, by mathematically defining the geometric properties of time in his space-time universe in terms of the constant velocity of light he provided a qualitative and quantitative means of define the time-based components of Maxwell’s equations in terms of their spatial counterparts.*

The fact that one can use Einstein’s equations to qualitatively and quantitatively redefine the curvature in space-time he associated with gravitational forces in terms of four *spatial* dimensions is one bases for assuming, as was done in the article â€œ Defining energy? â€ Nov 27, 2007 that all forms of energy including gravitational and electromagnetism can be derived in terms of a spatial displacement in a surface of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

This allows one to form a physical image of electromagnetic force and why it moves through space as was done in the article " What is electromagnetism? " Sept, 27 2007 in terms of the differential force caused by the "peaks" and "toughs" of an energy wave moving on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Briefly it showed it is possible to derive the electrical and magnetic properties of an electromagnetic field by extrapolating the laws of Classical Wave Mechanics in a three-dimensional environment to a wave moving on a "surface" of three-dimensional space manifold with respect to a fourth *spatial* dimension.

For example, a wave on the two-dimensional surface of water causes a point on that surface to become displaced or rise above or below the equilibrium point that existed before the wave was present. A force is developed by that differential displacement of the surfaces, which will result in the elevated and depressed portions of the water moving towards or become "attracted" to each other and the surface of the water.

Similarly, an energy wave on the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension would cause a point on that "surface" to become displaced or rise above and below the equilibrium point that existed before the wave was present.

Therefore, classical wave mechanics, if extrapolated to four *spatial* dimensions tells us a force will be developed by the differential displacements caused by an energy wave moving on a "surface" of three-dimensional space with respect to a fourth *spatial* dimension that will result in its elevated and depressed portions moving towards or become "attracted" to each other resulting as the wave moves through space.

This defines the causality of the attractive forces of unlike charges associated with the electromagnetic field component of a photon in terms of a force developed as the wave moves through four *spatial* dimensions by a differential displacement of a point on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

However, it also provides a classical mechanism for understanding why similar charges repel each other because observations of water show that there is a direct relationship between the magnitude of a displacement in its surface to the magnitude of the force resisting that displacement.

Similarly, the magnitude of a displacement in a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension caused by two similar charges will be greater than that caused by a single one. Therefore, similar charges will repel each other because the magnitude of the force resisting the displacement will be greater for two charges than it would be for a single charge.

One can also derive the magnetic component of an electromagnetic wave in terms of the horizontal force developed by the displacement caused by its peaks and troughs. This would be analogous to how the perpendicular displacement of a mountain generates a horizontal force on the surface of the earth, which pulls matter horizontally towards the apex of that displacement.

Additionally, one can derive the causality of electrical component of electromagnetic energy in terms of the energy associated with its "peaks" and "troughs" that is directed perpendicular to its velocity vector while its magnetic component would be associated with the horizontal force developed by that perpendicular displacement because classical Mechanics tells us a horizontal force will be developed by that displacement which will always be 90 degrees out of phase with it. This force is called magnetism.

In other words, it allows one to define a physical model for the propagation of an electromagnetic field in terms of Einstein’s space-time theory.

Additionally, the above conceptual model can be quantified, as was mentioned earlier by using the valid laws of mathematics to transform his space-time equations to their equivalent in four *spatial* dimensions. This equivalence also allows one to explain both electromagnetism and gravity "as aspects of some broader mathematical structure" in terms of the geometry of four *spatial* dimensions or four-dimensional space-time.

Yet, it also explains why electromagnetic energy when observed always presents itself as the particle called a photon in terms of Einstein’s space-time model.

For example, the article, " Why is energy/mass quantized? " Oct. 4, 2007 showed that one can use the Einstein’s theories to explain the quantum mechanical properties of an electromagnetic wave by extrapolating the rules of classical resonance in a three-dimensional environment to an energy wave moving on surface of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in an energy wave moving in four *spatial* dimensions.

The existence of four *spatial* dimensions would give the energy wave associated with a photon the ability to oscillate spatially on a "surface" between a third and fourth *spatial* dimensions thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital would force the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension to oscillate with the frequency associated with the energy of that event.

However, the oscillations caused by such an event would serve as forcing function allowing a resonant system or "structure" to be established in four spatial dimensions.

As was shown in that article these resonant systems in four *spatial* dimensions are responsible for the particle called a photon.

However, one can also use Einstein space-time theories to explain how the boundaries of the standing wave responsible for creating the resonant system that article indicated was responsible of a particles formation.

In classical physics a standing wave is created when the vibrational frequency of a source causes reflected waves from one end of a confined medium to interfere with incident waves from the source. This interference of the wave energy causes their peaks troughs to be reinforce in the volume they are occupying thereby creating a standing wave.

The confinement required to create a standing wave in space-time or its equivalent in four *spatial* dimensions can be understood by comparing it to the confinement a point on the two-dimensional surface of paper experiences when oscillating with respect to three-dimensional space. The energy associated with the wave motion of that point would be confined to its two-dimensional surface and would be reflected and interfere with the incident wave when reaches three-dimensional space at its edge. Therefore, a standing would be created by its interaction with three-dimensional space.

In other words when a wave on the surface of a piece of paper encounters the third spatial dimension at its edge it is reflected back allowing a standing wave to be formed on its surface.

*Similarly, an electromagnetic wave moving on the surface of three-dimensional space would be confined to it and reflected back to that volume, similar to the surface of the paper if it was prevented from oscillating with respect to a four spatial dimensions or four-dimensional space-time by an observation*.

In other words, when an electromagnetic wave is confined to three-dimensional space by an observation or an interaction with particle like a proton or electron the interference caused by that confinement sets up a resonant standing wave in space which is called a photon.

Additionally, it tells us that *the reason the energy of electromagnetic wave always without exception becomes a particle when observed is because of the fact that all observations or interactions with other particles will confine its motion to three-dimensional space thereby creating the resonate system that defined a particle that was shown to be responsible for a particle in the article *" Why is energy/mass quantized? " Oct. 4, 2007

**As mentioned early, the above conceptual model can be quantified by using the valid laws of mathematics to transform his space-time equations to their equivalent in four *spatial* dimensions. This equivalence as was shown above allows one to explain both particle and wave properties of electromagnetisms and gravity "as aspects of some broader mathematical structure" in terms of the geometry of four *spatial* dimensions or four-dimensional space-time. **

**It should be remembered that Einstein’s genius allows us to choose whether to define an electromagnetic wave either a space-time environment or one consisting of four *spatial* dimension when he defined its geometry in terms of the constant velocity of light. **

**Later Jeff **

**Copyright Jeffrey O’Callaghan 2020**

The Road to Unifying | The Road to Unifying | The Road to Unifying |

** **

It is possible, as this article will show that a standing wave in space-time is responsible for a photon.

A standing waves are created within a medium when the vibration frequency of the source causes reflected waves from one end of the medium to interfere with incident waves from the source. This interference occurs in such a manner that specific points along the medium appear to be standing still. Because the observed wave pattern is characterized by points that appear to be standing still, the pattern is often called a standing wave pattern. Such patterns are only created within the medium at specific frequencies of vibration. These frequencies are known as harmonic frequencies, or merely harmonics. At any frequency other than a harmonic frequency, the interference of reflected and incident waves leads to a resulting disturbance of the medium that is irregular and non-repeating.

In March 1905 Einstein published a paper on the photoelectric effect entitled "On a Heuristic Viewpoint Concerning the Production and Transformation of Light" in which he proposed the idea of energy quanta and postulated light exists as tiny packets, or particles, called photons.

In that paper he stated Energy, in the propagation of a ray of light, is not continuously distributed over steadily increasing spaces, but it consists of a finite number of energy quanta but he did not say why.

Even so many fell the idea of light quanta contradicts the wave theory of light that follows naturally from James Clerk Maxwell’s equations for electromagnetic behavior and, more generally, the assumption of infinite divisibility of energy in physical systems.

**Additionally he did not address the issue of how these "tiny packets" of energy called photons can move through space at the speed of light. This present a problem because he showed that energy and mass are equivalent and that the mass of any object or particle moving at the speed of is infinite. Therefore, if energy is equivalent to mass one would assume that energy required to move a photon at the speed of light would be infinite.**

However, Einstein gave us a way to define electromagnetic energy in a manner which is not only consistent with his theories but also with our classical understanding of nature when, in his General Theory of Relativity he showed that matter can be converted into energy or energy into matter according to the equation E=mc2.

For example Einstein defined the origin of the mass component of particles and all other objects, such as the sun in terms of curvature or distortion in the continuous field properties of space-time not in terms of their particle properties.

QED defines the fundamental unit (quanta) of light as "bundles of pure energy traveling at the speed of light with the unique property of being both particle and wave. However this means that as light moves through space-time the peaks and troughs of its wave properties would cause positive and negative spatial displacements in the "surface’ of space time.

**Yet, it is difficult to understand how a spatial displacement can be responsible for of electromagnetism and how and why its wave properties morph to the particle QED defines as the photon when it is observed or interacts with matter because he CHOSE to use time or a displacement in space-time dimension to define mass and energy and not its spatial properties. **

**Yet he gave us the ability to form a physical image of this how the spatial properties of a photon’s wave packet are responsible for its movement through space when he defined its geometric properties in terms of the constant velocity of light and a dynamic balance between mass and energy because that provided a method of converting a unit of time in a space-time environment to a unit of space in four *spatial* dimensions. Additionally because the velocity of light is constant he also defined a one to one quantitative and qualitative correspondence between his space-time universe and one made up of four *spatial* dimensions.**

The fact that one can use Einstein’s equations to qualitatively and quantitatively redefine the curvature in space-time he associated with energy in terms of four *spatial* dimensions is one bases for assuming as was done in the article ‘Defining energy?â’ Nov 27, 2007 that all forms of matter and energy can be derived in terms of a spatial displacement in a ‘surface’ of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

However, this change in perspective gives one the ability to understand how the energy of a photon can move through space at the speed of light why it becomes a particle when interacting with matter in terms of the concepts of his theories.

For example as waves travel through water; they do not take the water with them because as wave arrives it lifts the water particles, they then travel forward, down and back so that each particle completes a circle. Circling movements of particles near the surface set off smaller circling movements below them therefore the waves don’t actually move the water forward. In other words the particles in a wave do not move with respect to space but exchange their potential energy of the water for kinetic energy associated with the wave’s movement.

Similar to wave on water the trough of a light wave would create a point with a positive curvature on a "surface" of the three-dimensional space manifold with respect to a fourth *spatial dimension which would present itself as the potential energy Einstein associated with mass. That point in space would then travel forward and up and back so that each one completed a circle without moving with respect to background of space. As the wave passed this point the potential energy of positive curvature in four "spatial" dimensions Einstein associated with mass would be converted to kinetic energy associated with a moving mass. In other words the wave packet of a photon can move though space at the speed of light because similar to a wave on water light waves do not cause a point in space to move with respect to the background of space-time.

This suggest that light is not electromagnetic wave but an energy wave in space-time which is the result of the potential energy created by the trough of a wave on its "surface" being converted to the kinetic energy associated with its peak thereby causing what is called light to move through space.

**However, this also tell us when viewed in terms of their spatial properties that the electromagnetic properties of a light wave are the result of its propagation and not the casualty as is suggested by Maxwell’s equations.**

**(Later it will be shown in terms of those spatial properties the reason why this wave becomes a particle when interacting with matter but for now we would like to focus our attention on electromagnetic properties of light or a photon’s wave packet) **

As was mention earlier a wave on the two-dimensional surface of water causes a point on that surface to be become displaced or rise above or below the equilibrium point that existed before the wave was present. A force will be developed by the differential displacement of the surfaces, which will result in the elevated and depressed portions of the water moving towards or become "attracted" to each other and the surface of the water.

Similarly a matter wave on the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension would cause a point on that "surface" to become displaced or rise above and below the equilibrium point that existed before the wave was present.

Therefore, classical wave mechanics, if extrapolated to four *spatial* dimensions tells us a force will be developed by the differential displacements caused by a matter wave moving on a "surface" of three-dimensional space with respect to a fourth *spatial* dimension that will result in its elevated and depressed portions moving towards or become "attracted" to each other.

This defines the causality of the attractive forces of unlike charges associated with the electromagnetic wave component of a photon in terms of a force developed by a differential displacement of a point on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

However, it also provides a classical mechanism for understanding why similar charges repel each other because observations of water show that there is a direct relationship between the magnitudes of a displacement in its surface to the magnitude of the force resisting that displacement.

Similarly the magnitude of a displacement in a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension caused by two similar charges will be greater than that caused by a single one. Therefore, similar charges will repel each other because the magnitude of the force resisting the displacement will be greater for two charges than it would be for a single charge.

One can define the causality of electrical component of electromagnetic radiation in terms of the energy associated with its "peaks" and "troughs" that is directed perpendicular to its velocity vector while its magnetic component would be associated with the horizontal force developed by that perpendicular displacement.

However, Classical Mechanics tells us a horizontal force will be developed by that perpendicular or vertical displacement which will always be 90 degrees out of phase with it. This force is called magnetism.

This is analogous to how the vertical force pushing up of on mountain also generates a horizontal force, which pulls matter horizontally towards the apex of that displacement.

This shows that one can use the spatial properties of Einstein’s theories to derive causality of the electromagnetic forces of light and how the wave packet Quantum Electrodynamics associates with a photon is propagated through space by extrapolating the laws of classical mechanics in a three-dimensional environment to one consisting of four dimensional space-time or four *spatial* dimensions.

**However viewing a light in terms of the spatial instead of the time properties of his theories allows one to understand how why it always appears as a particle when measured or observed. **

For example in the article ‘Why is energy/mass quantized?’ Oct. 4, 2007 it was shown one can physical derive photonic properties of light by extrapolating the laws of classical wave mechanics in a three-dimensional environment to a matter energy wave on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in one consisting of four spatial dimensions.

The existence of four *spatial* dimensions would give a matter wave the ability to oscillate spatially on a "surface" between a third and fourth *spatial* dimensions thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital. This would force the "surface" of a three-dimensional space manifold to oscillate with the frequency associated with the energy of that event.

The oscillations caused by such an event would serve as forcing function allowing a resonant system or "structure" to be established space.

Therefore, these oscillations in a "surface" of a three-dimensional space manifold would meet the requirements mentioned above for the formation of a resonant system or "structure" in four-dimensional space if one extrapolated them to that environment.

Classical mechanics tells us the energy of a resonant system can only take on the discrete or quantized values associated with it fundamental or a harmonic of its fundamental frequency.

Hence, these resonant systems in four *spatial* dimensions would be responsible for the discrete quantized energy associated with the quantum mechanical properties of a photon.

**Yet one can also define the boundary conditions required to establish the standing wave component of a resonant system mentioned earlier that is responsible for it its particle properties as defined by QED.**

For example in classical physics, a point on the two-dimensional surface of paper is confined to that surface. However, that surface can oscillate up or down with respect to three-dimensional space.

Similarly an object occupying a volume of three-dimensional space would be confined to it however, it could, similar to the surface of the paper oscillate “up” or “down” with respect to a fourth *spatial* dimension.

The confinement of the “upward” and “downward” oscillations of the field properties of mass with respect to a fourth *spatial* dimension is what defines the spatial boundaries that enables the formation of a resonant system which the article “Why is energy/mass quantized?” defined as being responsible for a particle.

When a wave on water comes ashore the energy associated with its wave properties is confined to a specific region of the shoreline.

Similarly when a photon’s wave packet is measured or observed a portion of its wave energy is transmitted to the measuring instrument while some of it may be redirected or reflected similar to a wave striking the shoreline. In other word the energy wave which earlier was define as being responsible for the transmission of light interacts with measuring equipment for the same reason a water wave interacts with the shoreline.

**However it also explains why light is always observed as a particle when it encounters encounters a measuring instrument or is observed. **

In the quantum mechanical system described above such as light interacting with a particle, resonance only occurs when the frequency at which the force applied is equal or nearly equal to one or a multiple of the natural frequencies of the system on which it acts. In other words light when confined to three-dimensional space by interaction with a particle it will always present itself as the resonant structure that has the energy equal to one or a multiple of the natural frequency of space time. The remaining energy will be radiated through space as light with a lower frequency.

**In other words the particle component of light or an electromagnetic wave is not the cause of its interaction with particles but a result of it.**

**However one can use the above model to explain why photons do not interact with each other because similar to waves on water if their is no obstruction to hinder their movement a wave will not interact with each other. In other words, photon do not interfere with each other for the same reason that all energy waves do not. **

**Summing up, Einstein genius allows us to view his theory in either four dimensional space-time or four spatial dimensions. As was shown above changing ones perspective on his theory from time to its spatial equivalent allows one to define light as an energy wave in space and shows the electromagnetic properties are the result NOT the casualty of its propagation but a result of it. Similarly it shows the particle component of light is not the cause of its interaction with a particle but a result of it. **

It is important to note the validity these conclusions cannot be falsified if one accepts the validity of his theories.

Later Jeff

Copyright Jeffrey O’Callaghan 2019

The Road to Unifying | The Road to Unifying | The Road to Unifying |

One cannot deny that Quantum mechanics, the theory that defines the tiny world of particles and Einstein’s theories, the one that defines what we see through a telescope have been the most successful scientific theories of modern times However, attempts to bring these two theories together and define "A Theory of Everything" have been unsuccessful.

However, the fact that we have been unable to do so suggests that one or both of these theoretical models does not describe the true nature of reality because the world we see through a telescope must have its foundations in the world of the very small therefore they must be connected.

There can be many reasons for this. One is that foundational assumptions of either or both of them is incorrect. In other words, the world of the tiny may not be governed by probabilities as quantum theory suggests or the world, we see though a telescope may not be ruled by relativistic properties of four dimensional space-time.

*H***owever, there is another possibility that many have over looked *** is that even though their mathematics makes very accurate perditions of experimental observations they do not accurately define reality of their operating environments. *

For example, Einstein mathematically defined the physical structure of the universe in terms of the geometry four dimensional space-time*.*

However, when using the constant velocity of light and the velocity of objects that do not move at that speed to define its geometric properties he provided a way of mathematical converting a unit of time in a space-time universe to unit of space in one physically consisting of only four *spatial* dimensions.

In other words, their is an equally valid interpretation of his mathematics in terms of only four spatial dimensions.

*Since both of these solutions that of four dimensional space-time and four spatial dimensions would yield the same numerical results it gives one a different way of connecting his theories to those of Quantum mechanics based on the physical properties of four spatial dimensions instead of four dimensional space-time.*

Quantum Theory on the other hand defines tiny world of particles in terms of the non physical probabilities associated with SchrÃ¶dinger wave equation which as mentioned earlier no one has been able to physical connect to the space-time universe define by Einstein.

However, the fact that Einstein provided an alternative solution to his mathematics in terms of four spatial dimensions suggests it may be possible to make that connection and therefore define a Theory of Everything by using the alternative solution of four spatial dimension that his theory provides instead of one based on four dimensional space-time.

For example the article "Why is mass quantized?" Oct. 4, 2007 showed one could derive the quantum mechanical properties of energy in terms of a resonant "system" or structure formed by a energy wave on the surface of a three-dimensional spatial manifold with respect to a fourth *spatial* dimension.

Briefly that article showed the four conditions required for resonance to occur in a three-dimensional environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate can be meet in one consisting of terms of four spatial dimension.

Its continuous properties would allow an energy wave on a "surface’ of a three-dimensional space manifold to oscillate with respect to a fourth *spatial* dimension thereby fulfilling one of the requirements for resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital. This would force the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension to oscillate with the frequency associated with the energy of that event.

Therefore, these oscillations in a continuous non-quantized field of energy would meet one of the requirements mentioned above for the formation of a resonant system or "structure" in space.

Observations of a three-dimensional environment show the energy associated with resonant system can only take on the incremental or discreet values associated with a fundamental or a harmonic of the fundamental frequency of its environment.

Similarly the energy associated with resonant systems in four *spatial* dimensions could only take on the incremental or discreet values associated a fundamental or a harmonic of the fundamental frequency of its environment.

These resonant systems in a space-time environment would be responsible for the incremental or discreet energy associated with quantum mechanical systems.

Another requirement for a resonate system to be formed is that the wave must be confined to specific volume of space.

However, one can also define the confinement of the resonant component of a particle and therefore establish a physical connection to the wave particle duality quantum mechanics associates with energy in terms of the relativistic properties of four *spatial* dimensions.

In physics, a point on the two-dimensional surface of paper is confined to that surface. However, that surface can oscillate up or down with respect to three-dimensional space.

Similarly an object occupying a volume of three-dimensional space would be confined to it however, it could, similar to the surface of the paper oscillate "up" or "down" with respect to a fourth *spatial* dimension.

The confinement of the "upward" and "downward" oscillations of a three-dimension volume with respect to a fourth *spatial* dimension is what defines the spatial boundaries associated with a particle in the article "Why is energy/mass quantized?".

**In other words, an energy wave in four *spatial* dimensions will maintain its wave properties unless it is confined to three by an observation, therefore it it always be view as a particle when an observation is made and any energy left over from the formation of its resonate structure will be radiating from the point of observation in the form of light or an energy wave.**

The physics of wave mechanics also tells us that due to their continuous properties the energy waves the article "__Why is energy/mass quantized?__" Oct. 4, 2007 associated with a quantum system would be distributed throughout the entire "surface" a three-dimensional space manifold with respect to a fourth *spatial* dimension.

For example the energy of a vibrating or oscillating ball on a rubber diaphragm would be disturbed over its entire surface while the magnitude of those vibrations would decrease as one move away from the focal point of the oscillations.

Similarly if the assumption that quantum properties of energy are a result of vibrations or oscillations in a "surface" of three-dimensional space is correct those oscillations would be distributed over the entire "surface" three-dimensional space while the magnitude of those vibrations would be greatest at the focal point of the oscillations and decreases as one moves away from it.

(Some may question the fact that the energy wave associated with particle would be distributed over the entire universe. However, the relativistic properties of space-time and four spatial dimensions tell that distance perceived by objects or particles in relative motion is dependent on their velocity which become zero at the speed of light. Therefore, from the perspective of an energy wave moving at the speed of light, the distance between all points in the universe along it velocity vector is zero. In other words, it’s energy is distributed or simultaneous exists at every point in the universe along its velocity vector. There can be not other conclusion if one accept the validity of Einstein’s theories.)

As mentioned earlier the article â€œ__Why is energy/mass quantized?__â€ shown a quantum particle is a result of a resonant structure formed by an energy wave on the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Yet the science of Wave Mechanics tells us resonance would most probably occur on the surface of the rubber sheet were the magnitude of the vibrations is greatest and would diminish as one move away from that point,

Similarly a particle would most* probably* be found were the magnitude of the vibrations in a "surface" of a three-dimensional space manifold is greatest and would diminish as one move away from that point.

This shows how, by interpreting Einstein space-time theories in their equivalent four spatial dimension one can connect the non physical probabilities associated with SchrÃ¶dinger wave equation to the reality of the world defined by him.

**Additional it shows, by changing our interpretation of Einstein’s theories from four dimensional space-time to it equivalent in four spatial dimensions allows one to clearly understand the physical connection between the probabilistic world of quantum theory and the relativistic world of his theories, thereby allowing one to form a Theory of Everything. **

**Later Jeff **

**Copyright Jeffrey O’Callaghan 2019**

The Road to Unifying | The Road to Unifying | The Road to Unifying |