MIT Lecture 1 Introduction to Superposition

Quantum mechanics defines a particle only in terms of the probabilistic values associated with Schrödinger wave equation and assumes that it exists or is superpositioned in all possible places before a measurement is made.

In other words in a quantum system Schrödinger wave equation plays the role of Newtonian laws in that it predicts the future position or momentum of a particle in terms of a probability distribution by assuming that it simultaneously exists everywhere in three-dimensional space. 

This accentuates difference between quantum and classical mechanics because it derives the evolution of a particle in terms of it being in one place both before and after a measurement was taken whereas quantum mechanics derives its finial resting place in terms of an infinite number of possible starting points.

However one may be able to reconcile these two conflicting concepts by observing how matter and energy interact in terms of the classical properties of space-time.

But it will be easier if we first transpose or covert Einstein’s space-time universe to one consisting of only four *spatial* dimensions.

This is because it will allow us to define the mechanism responsible for the superpositioning of particles it in terms of a geometry which is directly related their position or spatial properties instead of its non-positional or temporal components.

Einstein gave us the ability to do this when he use the equation E=mc^2 and the constant velocity of light to define the geometric properties of space-time because that provided a method of converting a unit of space-time associated with energy to unit of space associated with position.  Additionally because the velocity of light is constant he also defined a one to one quantitative correspondence between his space-time universe and one made up of four *spatial* dimensions.

However the fact that one can use Einstein’s equations to qualitatively and quantitatively redefine the curvature in space-time he associated with energy in terms of four *spatial* dimensions is one bases for assuming, as was done in the article “Defining energy?” Nov 27, 2007 that all forms of energy can be derived in terms of a spatial displacement in a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

This will allow as the article “Why is energy/mass quantized?” Oct. 4, 2007 to understand the physicality of the quantum properties energy/mass by extrapolating the laws of classical wave mechanics in a three-dimensional environment to a matter wave on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in one consisting of four spatial dimensions.

The existence of four *spatial* dimensions would give a matter wave the ability to oscillate spatially on a "surface" between a third and fourth *spatial* dimensions thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital.  This would force the "surface" of a three-dimensional space manifold to oscillate spatially with the frequency associated with the energy of that event.

The oscillations caused by such an event would serve as forcing function allowing a resonant system or "structure" to be established space.

Therefore, these oscillations in a "surface" of a three-dimensional space manifold would meet the requirements mentioned above for the formation of a resonant system or "structure" in four-dimensional space if one extrapolated them to that environment. 

Classical mechanics tells us the energy of a resonant system can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency.

Hence, these resonant systems in four *spatial* dimensions would be responsible for the discrete quantized energy associated with the quantum mechanical systems.

Yet it also allows one to define the boundary of a quantum system in terms of the geometric properties of four *spatial* dimensions.

For example in classical physics, a point on the two-dimensional surface of paper is confined to that surface.  However, that surface can oscillate up or down with respect to three-dimensional space. 

Similarly an object occupying a volume of three-dimensional space would be confined to it however, it could, similar to the surface of the paper oscillate “up” or “down” with respect to a fourth *spatial* dimension.

The confinement of the “upward” and “downward” oscillations of a three-dimension volume with respect to a fourth *spatial* dimension is what defines the spatial boundaries associated with a particle in the article “Why is energy/mass quantized?

As mentioned earlier in the article “Defining energy?” Nov 27, 2007 showed all forms of energy can be derived in terms of a spatial displacement in a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

However assuming its energy is result of a displacement in four *spatial* dimension allows one to derive the the most probable position of a particle in terms of its wave function by extrapolating the observations and classical laws associated with a three-dimensional environment to a fourth *spatial* dimension.

Classical mechanics tell us that due to the continuous properties of waves the energy the article “Why is energy/mass quantized?” associated with a quantum system would be distributed throughout the entire "surface" a three-dimensional space manifold with respect to a fourth *spatial* dimension.

For example Classical mechanics tells us that the energy of a vibrating or oscillating ball on a rubber diaphragm would be disturbed over its entire surface while the magnitude of those vibrations would decease as one move away from the focal point of the oscillations. 

Similarly if the assumption that quantum properties of energy/mass are a result of vibration or oscillations in a "surface" of three-dimensional space is correct then classical mechanics tell us that those oscillations would be distributed over the entire "surface" three-dimensional space while the magnitude of those vibrations would be greatest at the focal point of the oscillations and decreases as one moves away from it.

As mentioned earlier the article “Why is energy/mass quantized?” shown a quantum mechanical system is a result of a resonant structure formed on the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Yet Classical Wave Mechanics tells us resonance would most probably occur on the surface of the rubber sheet were the magnitude of the vibrations is greatest and would diminish as one move away from that point,

Similarly a particle would most probably be found were the magnitude of the vibrations in a "surface" of a three-dimensional space manifold is greatest and would diminish as one move away from that point.

In other words a particle appears to be superpositioned because its wave energy is distributed in probabilistic manner throughout the entire universe.

This suggests the reason why particles appear to be superpositioned is not due to the mathematical probabilities associated with Schrödinger wave equation but due to a classical interaction of the wave properties of a quantum system with the  geometry of a universe of a consisting either four dimensional space-time or four *spatial* or time dimension.

It should be remember Einstein’s genius allows us to choose to define a quantum system in either a space-time environment or one consisting of four *spatial* dimension when he defined the geometry of space-time in terms of the constant velocity of light. This interchangeability broadens the environment encompassed by his theories by making them applicable to both the spatial as well as the time properties of our universe thereby giving us a new perspective on the causality of the quantum mechanical properties of energy/mass

Later Jeff

Copyright Jeffrey O’Callaghan  2015

 

Anthology of
The Imagineer’s Chronicles
Vol. 1 thru 5

2007 thru 2014


Ebook
$10.50

 

The Reality
of the Fourth
Spatial
Dimension

 
Paperback
$9.77
Ebook

$6.24

     

The Imagineer’s
Chronicles
Vol. 5 — 2014

 
Paperback
$13.36
Ebook
$9.97

 
 

The Imagineer’s
Chronicles
Vol. 4 — 2013


Paperback
$13.29
E-book
$7.99

The Imagineer’s
Chronicles
Vol. 3 — 2012



Paperback

$10.96
Ebook
$6.55

The Imagineer’s
Chronicles
Vol. 2 — 2011

 
Paperback
$8.32
Ebook
$6.57

 
 

 

The Imagineer’s
Chronicles
2007 thru 2010


Paperback
$14.97
Ebook
$7.82

   
         

 

There can be no doubt the probabilistic interpretation of Schrödinger’s wave equation predicts with amazing precision the results of every experiment involving the quantum world that has ever been devised to test it.

However this interpretation is at odds with the reality of the classical or deterministic world most of us appear to live in because it assumes that for a given set of initial conditions there can only be one outcome while the probabilistic interpretations of quantum mechanics assumes there can be an infinite number.

Leonard Susskind’s
Quantum probabilities

However many of the standard interpretations of quantum mechanics assume that probability is the fundamental property of the universe, while alternative interpretations explain it as an emergent or a second-order consequence of various limitations of the observer or the environment he or she is occupying when making an observation.

Determining which is the correct way of interpreting it is difficult because due to the limitation imposed on observers by uncertainty principle we can never be sure what is happening on the quantum scale when an observation is made.

Yet that does not mean that we cannot extrapolate what we can learn from observing our four dimensional space-time environment to the quantum world to help us understand what happens when we make an observation.

However we will find it beneficial to redefine Einstein space-time model of the universe into its equivalent in four spatial dimensions.

(The reason for this will become obvious later on)

Einstein gave us the ability to do this when he use the equation E=mc^2 and the constant velocity of light to define the geometric properties of space-time because it provided a method of converting a unit of it he associated with energy to unit of space we feel he would have associated with mass. Additionally because the velocity of light is constant he also defined a one to one quantitative correspondence between his space-time universe and one made up of four *spatial* dimensions.

As mentioned earlier Quantum mechanics assumes one can only determine the future evolution of a particle in terms of the probabilistic values associated with its wave function which is in stark contrast to the Classical "Newtonian" assumption that one can assign precise values of future events based on the knowledge of their past. 

In other words in a quantum system Schrödinger’s wave equation plays the role of Newtonian laws in that it predicts the future position or momentum of a particle in terms of a probability distribution.

This accentuates the fundamental difference between quantum and classical mechanics because the latter defines the reality of future events in terms of pervious events whereas quantum mechanics defines them based on the "non-classical" reality of the sum total of all possible events that can occur.  

However as mentioned earlier one may be able to understand the physical reason why these two theories define the reality of events differently if, as was done earlier one redefine Einstein’s space-time concepts in terms of four spatial dimensions.

In the article “Why is energy/mass quantized?” Oct. 4, 2007 it was shown one can understand the physicality of quantum properties energy/mass by extrapolating the laws of classical wave mechanics in a three-dimensional environment to a matter wave on a "surface" of a three-dimensional space manifold with respect to  a fourth *spatial* dimension.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in one consisting of four spatial dimensions.

The existence of four *spatial* dimensions would give a matter wave the ability to oscillate spatially on a "surface" between a third and fourth *spatial* dimensions thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital.  This would force the "surface" of a three-dimensional space manifold to oscillate with the frequency associated with the energy of that event.

The oscillations caused by such an event would serve as forcing function allowing a resonant system or "structure" to be established space.

Therefore, these oscillations in a "surface" of a three-dimensional space manifold would meet the requirements mentioned above for the formation of a resonant system or "structure" in four-dimensional space if one extrapolated them to that environment. 

Classical mechanics tells us the energy of a resonant system can only take on the discrete or quantized values associated with it fundamental or a harmonic of its fundamental frequency.

Hence, these resonant systems in four *spatial* dimensions would be responsible for the discrete quantized energy associated with the quantum mechanical systems.

(In the article "The geometry of quarks" Mar. 15, 2009  the internal structure of quarks, a fundament component of particles was derived in terms of a resonant interaction between a continuous energy/mass component of space and the geometry of four *spatial* dimensions.)

However, if a quantum mechanical properties of particle is a result of a matter wave on a “surface” of three-dimensional space with respect to a fourth *spatial* dimension, as this suggests one should be able to show that it is responsible for the uncertainties and probabilistic predictions made by Schrödinger and his wave equation regarding the position and momentum of particles.

Classical wave mechanics tells us a wave’s energy is instantaneously constant at its peaks and valleys or the 90 and 270-degree points as its slope changes from positive to negative while it changes most rapidly at the 180 and 360-degree points.

Therefore, the precise position of a particle could be only be defined at the “peaks” and “valleys” of the matter wave responsible for its resonant structure because those points are the only place where its energy or “position” is stationary with respect to a fourth *spatial* dimension.  Whereas it’s precise momentum would only be definable with respect to where the energy change or velocity is maximum at the 180 and 360-degree points of that wave.  All points in between would only be definable in terms of a combination of its momentum and position.

However, to measure the exact position of a particle one would have to divert or “drain” all of the energy at the 90 or 270-degree points to the observing instrument leaving no energy associated with its momentum left to be observed by another instrument.  Therefore, if one was able to precisely determine position of a particle he could not determine anything about its momentum.  Similarly, to measure its precise momentum one would have to divert all of the energy at the 180 or 360 point of the wave to the observing instrument leaving none of its position energy left to for an instrument which was attempting to measure its position.  Therefore, if one was able to determine a particles exact momentum one could not say anything about its position.

The reason we observe a particle as a point mass instead of an extended wave is because, as mentioned earlier the article ”Why is energy/mass quantized?“ showed energy must be packaged in terms of its discrete resonant properties.  Therefore, when we observe or “drain” the energy continued in its wave function, whether it be related to its position or momentum it will appear to come from a specific point in space similar how the energy of water flowing down a sink drain appears to be coming from a “point” source with respect the extended volume of water in the sink.

As mentioned earlier, all points in-between are a dynamic combination of both position and momentum.  Therefore, the degree of accuracy one chooses to measure one will affect the other. 

For example, if one wants to measure the position of a particle to within a certain predefined distance “m” its wave energy or momentum will have to pass through that opening.  However, Classical Wave Mechanics tells us that as we reduce the error in our measurement by decreasing that predefine distance interference will cause its energy or momentum to be smeared our over a wider area thereby making its momentum harder to determine.  Summarily, to measure its momentum “m”kg / s one must observe a portion the wavelength associated with its momentum.  However, Classical wave mechanics tell us we must observe a larger portion of its wavelength to increase the accuracy of the measurement of its energy or momentum.  But this means that the accuracy of its position will be reduced because the boundaries determining its position within the measurement field are greater.

However, this dynamic interaction between the position and momentum component of the matter wave would be responsible for the uncertainty Heisenberg associated with their measurement because it shows the measurement of one would affect the other by the product of those factors or m^2 kg / s.

Yet because of the time varying nature of a matter wave one could only define its specific position or momentum of a particle based on the amplitude or more precisely the square of the amplitude of its matter wave component.

This defines the physical reason in terms of four *spatial* dimensions for why we are unable to measure the exact position and moment of a quantum system.

However it also defines the reason why the probably functions of quantum mechanics are an emergent or a second-order consequence of various limitations of the observer or the environment and not a fundamental property of our universe because as was just shown the physicality of four *spatial* dimension places limitations on our ability to define the initial conditions or momentum and position of a quantum system we are measuring. 

In other words the reason quantum mechanics can only predict the probability of an event occurring is because of the limitations the physical properties of four *spatial* dimension places on an observer.

This shows why we should view the probabilistic properties of quantum mechanics as an emergent or a second-order consequence of the limitations of the four *spatial dimension or space-time environment he or she is occupying when making an observation and not a fundamental property of the universe.

Later Jeff

Copyright Jeffrey O’Callaghan 2014


 

Anthology of
The Imagineer’s Chronicles
Vol. 1 thru 5

2007 thru 2014

 
Ebook
$10.50

 

The Reality
of the Fourth
Spatial
Dimension

 
Paperback
$9.77
Ebook

$6.24

    

The Imagineer’s
Chronicles
Vol. 5 — 2014

 
Paperback
$13.36

Ebook
$9.97

 
 

The Imagineer’s
Chronicles
Vol. 4 — 2013

 
Paperback
$13.29
E-book
$7.99

The Imagineer’s
Chronicles
Vol. 3 — 2012

 
Paperback
$10.96
Ebook
$6.55

The Imagineer’s
Chronicles
Vol. 2 — 2011

 
Paperback
$8.32
Ebook
$6.57

 
 

 

 


The Imagineer’s
Chronicles
2007 thru 2010

 
Paperback
$14.97
Ebook
$7.82

 
     
 

« Previous Articles    Next Articles »
The Imagineer's Chronicles is based on WordPress platform, RSS tech , RSS comments design by Gx3.