Understanding the connection between space and time is difficult because we cannot see time or space even though we can perceive the void in space when it contains nothing
Additionally defining or describing what time is extremely difficult. Some define it only in the abstract saying that is an invention of the human consciousness that gives us a sense of order, a before and after so to speak of the changes that occur in our environment. However one can define or describe space in terms of the void we can see between objects that it contains.
Fay Dowker Public Lecture – Spacetime Atoms and the Unity of Physics 
In other words time and space do not appear to share any physical qualities.
Even so physicists have derived the physical structure of the universe in terms of a mathematical model that combines space and time into a single interwoven spacetime continuum.
However it is difficult to understand how in a spacetime environment they can physically interact when, as was just mentioned neither of them have any common properties.
Granted using mathematics one can explain how they do in terms of abstract concepts but it does not explain how and why they do in physical terms.
Yet one can use the fact that the one of the primary functions of time is to define change to form a physical image of how it interacts with space to create it.
Einstein gave us the ability to do this when he defined the energy contained in a volume of spacetime in terms the constant velocity of light because that provided a method of converting a unit of time to its equivalent unit of space in four *spatial* dimensions. Additionally because the velocity of light is constant it also defined a one to one quantitative and qualitative correspondence between his spacetime universe and one made up of only four *spatial* dimensions.
In other words he tells the physical properties of space and time are relative to an observer’s interpretation similar to how the measurements of their magnitudes are relative to an observer’s velocity because, as was show above one can reinterpret the mathematics associated with the spacetime environment of both the General and Special Theories of Relativity purely in terms of its spatial components to create an identical one in only four *spatial* dimensions. However one must be careful not to think of this as the physical replacement of the time dimension in Einstein’s spacetime universe with a spatial one because according to his mathematics they simultaneously coexist in the same geometric plain.
However the fact that one can use Einstein’s theories to qualitatively and quantitatively define the displacement he associated with energy in a spacetime universe in terms of four *spatial* dimensions is bases for assuming as was done in the article “Defining energy” Nov 27, 2007 that all forms of energy can be derived in terms of a spatial displacement in a "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension.
Doing would also allow one to form a physical image of how the geometric properties of space or time interact to create change because as mentioned earlier we can form a clear physical image of how a void in four spatial dimensions created by that displacement would cause change.
For example we can physically observe how the energy stored in the displacement of water in dam causes change in an environment when it is released or allowed to flow over it. In other words we can form a physical image of the causality of the changing level of water in the dam in terms of its movement through the spatial void between the top and bottom of the dam.
Similarly one can form a clear physical image of how and why change would occur in our three dimensional environment by assuming the energy stored in a spatial displacement in a "surface" of a three dimensional space manifold with respect to a fourth *spatial* dimension is released though the void that displacement creates in four dimensional space.
As was mentioned earlier it is difficult to form physical image of how time can interact with space because of its abstract properties.
However one can from a very clear image of how it does when one realizes that according Einstein theories the physical properties of space and time which as was shown above are relative to an observer coexist on in the same dimensional plain. Therefore an observer who looks at his theories form a spatial perspective can easily understand how change occurs in a space timeenvironment in terms of the physical example of water flowing over a dam.
It should be remember Einstein’s mathematical model which defines the physical geometry of our universe tells us that an all objects must simultaneously exist in both a spacetime environment and one consisting of four spatial dimension because as was shown above one can use his mathematics to define two identical universes; one in four dimensional time and another made up of only four *spatial* dimensions. Which one we use to define a solution to a problem, as mentioned earlier is only dependent on how an observer interprets his mathematics.
Later Jeff
Copyright Jeffrey O’Callaghan 2016
Anthology of 
The Reality of the Fourth Spatial Dimension Paperback $9.77 Ebook $6.24 
The Imagineer’s


The Imagineer’s

The Imagineer’s 
The Imagineer’s 

The Imagineer’s


The Imagineer’s 


01

Have you ever wondered why so many seeming rational scientists make seemly irrational assumptions to explain why our universe behaves the way it does and why Einstein was unable see, as Robert Oerter pointed out in his book "The Theory of Almost Everything: the magic of relativistic Quantum electrodynamics or QED.
For example he tells one reason he may have felt this way is because it defines the charge around a solitary electron as being caused by the spontaneous creation and evaporation of virtual electronpositron pairs which then instantaneously disappear. In other words when a virtual electronpositron pair is created near the (real) electron, the (imaginary) virtual positron will be attracted toward the real electron, while the virtual electron is repelled. Therefore there should be a resulting separation of charge
I think most rational people would consider someone irrational if they tried to convince l us the reason why they were late for work was because a swam of virtual or imaginary cars were blocking the road and disappeared after we showed up.
Shouldn’t we hold our scientists to the same degree of rationality?
Most who have studied the history of science are aware that Einstein was vehemently opposed to many of the fundamental components of quantum mechanics such as the existence of virtual particle’s to explain an isolated charge.
This was true even though he was able, in his General Theory of Relativity to derive the force of gravity in terms of the geometry of space and time while being unable to do the same for electromagnetism and charge, as was documented by the American Institute of Physics.
"From before 1920 until his death in 1955, Einstein struggled to find laws of physics far more general than any known before. In his Theory of Relativity, the force of gravity had become an expression of the geometry of space and time. The other forces in nature, above all the force of electromagnetism, had not been described in such terms. But it seemed likely to Einstein that electromagnetism and gravity could both be explained as aspects of some broader mathematical structure. The quest for such an explanation — for a "unified field" theory that would unite electromagnetism and gravity, space and time, all together — occupied more of Einstein’s years than any other activity".
One reason why it was difficult of him to visualize electromagnetic fields including those around a single charge may have been because he chose to define the universe in terms of four dimensional spacetime instead of four *spatial* dimensions because, as will be shown below it easier to visualize the properties of electrometric waves and charge in terms of their spatial rather time or spacetime properties.
However he did provide a method of understanding them in terms of their common properties when he chose to define gravity in a spacetime environment in terms of the equation E=mc^2 and constant velocity of light because that give him the ability to redefined it terms of the spatial properties of four *spatial* dimensions. Additionally because the velocity of light is constant he also defined a one to one quantitative and qualitative correspondence between his spacetime universe and one made up of four *spatial* dimensions.
The fact that one can use Einstein’s equations to qualitatively and quantitatively redefine the curvature in spacetime he associated with gravity in terms of four *spatial* dimensions is one bases for assuming as was done in the article “Defining energy?” Nov 27, 2007 that all forces can be derived in terms of a spatial displacement in a "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension.
One of the advantages to using this technique is that it allows one to define the physicality of gravitational and electrical forces including those around a single electron in the same terms.
For example In the article "Gravity in four spatial dimensions" Dec. 15, 2007 it was shown one can derive gravitational forces in terms of curvature or physical displacement in a "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension as well as one in a four dimensional spacetime environment.
However the article "What is electromagnetism?" Sept, 27 2007 showed one can also derive the forces associated with electromagnetism in terms of a similar displacement in the "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension.
Briefly that article showed it is possible to derive the forces associated with an electromagnetic wave by extrapolating the laws of Classical Wave Mechanics in a threedimensional environment to a matter wave moving on a "surface" of threedimensional space manifold with respect to a fourth *spatial* dimension.
A wave on the twodimensional surface of water causes a point on that surface to be become displaced or rise above or below the equilibrium point that existed before the wave was present. A force will be developed by the differential displacement of the surfaces, which will result in the elevated and depressed portions of the water moving towards or become "attracted" to each other and the surface of the water.
Similarly a matter wave on the "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension would cause a point on that "surface" to become displaced or rise above and below the equilibrium point that existed before the wave was present.
Therefore, classical wave mechanics, if extrapolated to four *spatial* dimensions tells us a force will be developed by the differential displacements caused by a matter wave moving on a "surface" of threedimensional space with respect to a fourth *spatial* dimension that will result in its elevated and depressed portions moving towards or become "attracted" to each other.
This defines the causality of the attractive forces of unlike charges associated with the electromagnetic wave component of a photon in terms of a force developed by a differential displacement of a point on a "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension.
However, it also provides a classical mechanism for understanding why similar charges repel each other because observations of water show that there is a direct relationship between the magnitudes of a displacement in its surface to the magnitude of the force resisting that displacement.
Similarly the magnitude of a displacement in a "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension caused by two similar charges will be greater than that caused by a single one. Therefore, similar charges will repel each other because the magnitude of the force resisting the displacement will be greater for two charges than it would be for a single charge.
One can define the causality of electrical component of electromagnetic radiation in terms of the energy associated with its "peaks" and "troughs" that is directed perpendicular to its velocity vector while its magnetic component would be associated with the horizontal force developed by that perpendicular displacement.
However, Classical Mechanics tells us a horizontal force will be developed by that perpendicular or vertical displacement which will always be 90 degrees out of phase with it. This force is called magnetism.
This is analogous to how the vertical force pushing up of on mountain also generates a horizontal force, which pulls matter horizontally towards the apex of that displacement.
However, as was mentioned earlier gravity can also be explain in terms of a differential force caused by a displacement in a "surface" of a threedimensional space manifold with respect to a fourth *spatial* dimension.
This shows how one can define a common mechanism for the causality of both electromagnetism and gravity in terms of a "unified field" consisting of four *spatial* dimension by extrapolating the laws of classical mechanics in a threedimensional environment to four *spatial* dimensions.
In other words one can visualize the fact that unlike charge attract each other while like ones repel in terms of the asymmetrical properties of spacetime or four spatial dimensions.
Einstein was unable to accomplish this in terms of fourdimensional spacetime because time is only observe to move in one direction forwards and therefore making it difficult to visualize the bidirectional movement of the spatial component of a matter wave moving on its "surface" that is responsible for electromagnetism .
However it also give a more rational explanation of the charge around a solitary electron than the spontaneous creation and evaporation of virtual electronpositron pairs because it shows that it can be understood in terms of a physical displacement in a "surface" of a threedimension space manifold with respect to fourth spatial dimension.
In other words it shows that electric forces are related to a physical displacement in a surface of a three dimensional space manifold with respect to a either a higher spatial or time dimension thereby eliminating the need to evoke the existence of virtual electronpositron pairs to understand the behavior of a charge around a solitary electron.
It should be remember Einstein’s genius allows us to choose to define charge in either a spacetime environment or one consisting of four *spatial* dimension when he defined that environment in terms mass energy and the constant velocity of light. This interchangeability broadens the environment encompassed by his theories thereby giving us a new perspective on the physicality of charge.
Latter Jeff
Copyright Jeffrey O’Callaghan 2016
Anthology of 
The Reality 
The Imagineer’s


The Imagineer’s

The Imagineer’s 
The Imagineer’s 

The Imagineer’s

The Imagineer’s 
