Can we influence reality?  Some misguided scientists think we can.

For example the Copenhagen model of Quantum Mechanics suggests the act observing an environment defines its reality as is shown by its interpretation of Thomson’s double-slit experiments because it holds that the myriad of probabilities it defines are unreal and only become real when their outcomes are observed.

Quantum Physics And How We Affect Reality!

In other words they feel reality is an emergent property of observation because it suggests that before one is made an environment does not exist or is unreal and only appears after being observed.

This is because, in the case of the double slit experiment many assume that the classical concepts of "particle" and "wave" cannot be used to fully describe the wave particle behavior of quantum-scale objects exposed by this experiment  Therefore many interpretations of quantum mechanics explain this paradox as a fundamental reality of the Universe.

In other words they feel that the act of observing creates its reality because as was mentioned earlier according to most quantum mechanical models an object does not exist as a particle or wave before it is observed and that its final reality, whether it is particle or wave is dependents on the act of observe it.

This prompted Einstein to say “I like to think that the moon is there even if I am not looking at it”.

However it would not be necessary to for anyone to assume that the moon was not there if they were not looking at it if it was possible to explain in terms of classical properties of space and time the wave/particle behavior of quantum-scale objects.

As mentioned earlier Thomson’s double-slit experiment clearly demonstrates the wave/particle behavior that is associated with the reality of a quantum mechanical environment.

This may be why Richard Feynman the farther of Quantum Electrodynamics believed Thomson’s double slit experiment provided the perfect mechanism for its understanding because it clearly demonstrates their inseparability.

However, as of yet no one has been able to explain in classical terms the behavior of the quantum environment encompassed by this experiment.

Yet Einstein may have given us a clue as to why when he said "If a new theory was not based on a physical image simple enough for a child to understand, it was probably worthless."

For example Einstein told us that our physical environment is made up of four dimensional space-time yet no one has ever observed the physicality of time or a space-time dimension.

Granted Einstein’s theories give us a very detailed and accurate description of how an interaction of time with the three *spatial* dimensions is responsible for the "reality" our world and he was able to give us a clear physical image how a curvature in space-time can be responsible for gravity by extrapolating the image of an object moving on a curved two dimensional "surface" in a three dimensional environment to four dimensional space-time.  However this image only contains reference to the physicality of the spatial dimensions and not a time or space-time dimension.

However, the fact that most humans perceive or define reality in terms of the physicality of the spatial dimensions instead of a time or space-time dimension suggests that one may be able to form a physical image of how and why the quantum world is what it is by viewing our universe in terms of its spatial instead of its time properties.

Einstein gave us the ability to do this when he used the constant velocity of light to define the geometric properties of space-time because it allows one to convert a unit of time in his four dimensional space-time universe to a unit of a space that is physically identical to those of our three-dimensional space.  Additionally because the velocity of light is constant it is possible to defined a one to one correspondence between his space-time universe and one made up of four *spatial* dimensions.

In other words by mathematically defining the geometric properties of time in his space-time universe in terms of the constant velocity of light he provided a qualitative and quantitative means of redefining it in terms of the geometry of four *spatial* dimensions.

The double slit experiment is made up of "A coherent source of photons illuminating a screen after passing through a thin plate with two parallel slits cut in it.  The wave nature of light causes the light waves passing through both slits to interfere, creating an interference pattern of bright and dark bands on the screen.  However, at the screen, the light is always found to be absorbed as discrete particles, called photons.

When only one slit is open, the pattern on the screen is a diffraction pattern however, when both slits are open, the pattern is similar but with much more detailed.  These facts were elucidated by Thomas Young in a paper entitled "Experiments and Calculations Relative to Physical Optics," published in 1803.  To a very high degree of success, these results could be explained by the method of Huygens–Fresnel principle that is based on the hypothesis that light consists of waves propagated through some medium.  However, discovery of the photoelectric effect made it necessary to go beyond classical physics and take the quantum nature of light into account.

It is a widespread misunderstanding that, when two slits are open but a detector is added to determine which slit a photon has passed through, the interference pattern no longer forms and it yields two simple patterns, one from each slit, without interference.  However, there ways to determine which slit a photon passed through in which the interference pattern will be changed but not be completely wiped out.  For instance, by placing an atom at the position of each slit and monitoring whether one of these atoms is influenced by a photon passing the interference pattern will be changed but not be completely wiped out.

However the most baffling part of this experiment comes when only one photon at a time impacts a barrier with two opened slits because an interference pattern forms which is similar to what it was when multiple photons were impacting the barrier.  This is a clear implication the particle called a photon has a wave component, which simultaneously passes through both slits and interferes with itself.  (The experiment works with electrons, atoms, and even some molecules too.)"

Yet as mentioned earlier one may be able to understand the wave particle duality of quantum objects such as a photon as is demonstrated in Thomson’s double slit experiment in terms of our classical reality if one converts or transposes Einstein’s space-time universe to four *spatial* dimension equivalent.

For example the article, "Why is energy/mass quantized?" Oct. 4, 2007 showed that one can explain and understand the physicality of the wave and particle properties of quantum object’s by extrapolating the laws of classical resonance in a three dimensional environment to a matter wave moving on “surface” of a three dimensional space manifold with respect to a fourth *spatial* dimension.  It also explains why all energy must be quantized or exists in these discrete resonant systems when observed.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in a matter wave moving in four *spatial* dimensions.

The existence of four *spatial* dimensions would give a matter wave the ability to oscillate spatially on a "surface" between a third and fourth *spatial* dimensions thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital.  This would force the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension to oscillate with the frequency associated with the energy of that event.

However, the oscillations caused by such an event would serve as forcing function allowing a resonant system or "structure" to be established in four spatial dimensions.

As was shown in that article these resonant systems in four *spatial* dimensions are responsible for its quantum mechanical properties.

However, it does not explain in classical terms why the energy of these waves not continuously distribute throughout space instead of being package in discrete units we call particles. 

In classical physics, a point on the two-dimensional surface of paper is confined to that surface.  However, that surface can oscillate up or down with respect to three-dimensional space. 

Similarly an object occupying a volume of three-dimensional space would be confined to it however, it could, similar to the surface of the paper oscillate "up" or "down" with respect to a fourth *spatial* dimension.

The confinement of the "upward" and "downward" oscillations of a three-dimension volume with respect to a fourth *spatial* dimension is what defines the spatial boundaries of the resonant system associated with all quantum objects including a photon in the article "Why is energy/mass quantized?".

This provides the ability to understand, in terms of our classical reality the inseparability of the wave-particle duality of energy/mass because clearly demonstrates how the one is dependent on the other.

However, it also defines why the interference patterns remains in Thomson’s double slit experiment when one photon at a time is fired at the barrier with both slits open or "the most baffling part of this experiment" is because, as mentioned earlier it is made up of a resonant system or "structure" therefore it occupies an extended volume which is directly related to the wavelength of its particle system.

This means a portion of a particles energy could simultaneously pass both slits, if the diameter of its volume exceeds the separation of the slits and recombine on the other side to generate an interference pattern. 

It also explains why the interference pattern disappears, in most cases when a detector is added to determine which slit a photon has passed through.  The energy required to measure which one of the two slits it passes through interacts with it causing the wavelength of that portion to change so that it will not have the same resonant characteristics as one that passed through the other slit   Therefore, the energy passing thought that slit will not be able to interact, in most cases with the energy passing through the other one to form an interference pattern on the screen.

However it also explains why, as was mentioned "there are ways to determine which slit a photon passed through that will cause a change in the interference pattern but will not completely wiped it out.

The fact that the interference pattern can still occur even if a measurement is made is because if the energy passing through one of the two slits is altered by a relatively small amount compared to what it originally was, classical wave mechanics tells us it will be able to interact to form a slightly different resonant system with a slightly different interference pattern on the other side than would be the case if no measurement was taken.

It should be pointed out that the fact that an interference pattern can be observed when a detector is added is a direct contraction of the Copenhagen interpretation of quantum mechanics.  It demands when a detector is added to the experiment to determine which slit a photon has passed through the interference pattern can no longer form.

However, this also means there should be a quantifiable minimum value of interaction between a measuring device and a photon that will permit the interference pattern to be reestablished on the other side after measuring which slit the photon passes through.

It also defines in classical terms the reason, why the measurements always takes the form particles and not waves in Thomson’s double slit experiment

As mentioned earlier, the article "Why is energy/mass quantized?" showed energy must be propagated through space in quantized resonant systems if one applies the concepts of classical reality to a matter wave on "surface" of a three-dimension space.  Therefore, because its energy must be propagated through space to be observed the energy impacting the screen always will have the discrete non-wavelike characteristics of a particle.

The above article demonstrates why it is not necessary for anyone to assume that observing a quantum environment influences or changes its reality to explain the results of the double slit experiment because it clearly shows they can be explained in terms of the unchanging reality of our classical physical environment.

Latter Jeff

Copyright Jeffrey O’Callaghan 2014


 

The Imagineer’s
Chronicles
Vol. 4 — 2013



Paperback
$13.29
E-book
$7.99

Anthology of
The Imagineer’s Chronicles
Vol. 1 thru 4


Ebook
$10.50

The Imagineer’s
Chronicles
Vol. 3 — 2012 

 
Paperback
$10.96
Ebook
$6.55

 
 

The Imagineer’s
Chronicles
Vol. 2 — 2011
 
Paperback
$8.32
Ebook
$6.57

 

The Reality
of the Fourth
Spatial
Dimension
 
Paperback
$9.77
Ebook

$6.24

The Imagineer’s
Chronicles
2007 thru 2010
 
Paperback
$14.97
Ebook
$7.82

 
         

Truth can only be found through the window of observation while "OUR reality" is determined by what we see in that window.

But some say what we see in it does not define "THE reality" because of the limitation of our senses.  For example humans can only see a very small portion of the electromagnetic spectrum therefore, because of those limitations they say that our senses should not be the only arbiters of "THE reality".

In other words because our instruments tell us that reality extends far, far beyond what our senses see, many feel the only way to find it is through the window they provide instead the one provided by our senses.

Consciousness & quantum physics ~ Reality is an illusion

However, our impression of "THE reality" is made up of a combination of what our senses see around us and what our instruments tell us about that world.

In other words each is an integral part of how we and science views "THE reality" and therefore the different realities they show us cannot be treated as separate.

For example the instruments we use to observe it tell us that a fundament component of a quantum environment is that all objects exist simultaneously as both particles and waves.

However, our senses tell us objects cannot be both a particle and wave at the same time.

But how can we merge or integrate these two realities and determine their fundamental component when what our instruments "tell" us about our world appears to conflict with what our senses see in it.

Einstein gave us a clue when he said "If a new theory was not based on a physical image simple enough for a child to understand, it was probably worthless."

Yet how can we form a physical image of the quantum world when its fundamental component, the wave particle duality of objects is contradictory to the physicality of our sensory environment.

We can start by reexamining how we define our sensory environment.

For example Einstein told us that our physical environment is made up of four dimensional space-time however no one has ever observed the physicality of time or a space-time dimension.

Therefore it is extremely difficult to form a physical image of the quantum world or any other based on the existence of time or a space-time dimension because it is not part of our sensory environment.

Granted Einstein’s theories give us a detailed and very accurate description of how an interaction of time with the three *spatial* dimensions is responsible for the "reality" of the sensory world we inhabit and he was able to give us a clear physical image how a curvature in space-time can be responsible for gravity.

For example the most common physical image use to explain gravity does not use time but instead extrapolates the image of an object moving on a curved two dimensional "surface" in a three dimensional environment to four dimensional space-time.  However this image only contains reference only to our sensory reality of the spatial dimensions and not a time or space-time dimension.

However, the fact that most humans define our physical "reality" in terms of the spatial dimensions instead of a time or space-time dimension suggests that one may be able to form a physical image of how and why the quantum world is what it is by viewing our universe in terms of its spatial instead of its time properties.

Einstein gave us the ability to do this when he used the velocity of light to define the geometric properties of space-time because it allows one to convert a unit of time in his four dimensional space-time universe to a unit of a space identical to those of our three-dimensional space.  Additionally because the velocity of light is constant it is possible to defined a one to one correspondence between his space-time universe and one made up of four *spatial* dimensions.

In other words by mathematically defining the geometric properties of time in terms of the constant velocity of light he provided a qualitative and quantitative means of redefining it in terms of the geometry of four *spatial* dimensions and gave us the ability to redefine the curvature or displacement he associated with energy/mass in a space-time environment to a spatial displacement in a fourth *spatial* dimension.

On pages 17 thru 23 of Richard P Feynman book "QED The Strange Theory of Light and Matter" he address the conflict between our sensory world and the particle wave reality of a quantum environment by describing what happens when light when it is partially reflected by two surfaces,

On those pages he writes that by placing two glass surfaces exactly parallel to each other one can observe how the photons of light reflected from the bottom surface interact with those reflected from the top surface.  Depending on the distance between the glass surfaces he can determine, by using a photo detector, that four percent or 4 out of 100 photons reflected from the lower surface of the glass could add up to as many as 16 or none at all when they interact with the photons reflected from the upper surface of the glass because of the reinforcement of the reflected wave energy from the bottom and top surfaces of the glass.

In other words the 4 photons reflected from the surface of the bottom piece of glass would interact with the incident ones to that surface creating from 0 to 8 photons while the 4 photons reflected from the surface of the top piece of glass would interact with the incident ones to it creating 0 to 8 more photons for a total of 0 to 16 photons.

These observations by Mr. Feynman support a wave theory of electromagnetic radiation because according to it, the energy associated with the interference of the 4 photons reflected from the bottom surface with 4 from the top will result in energy variations that corresponds to the energy of 0 to 16 photons.

However, wave theory also predicts the energy variations should be continuous.

In other words, the energy of the reflected photons should be able to take on any value between 0 and the combined energies associated with 16 photons.

The fact that the energy of the reflected photons Richard Feynman observed in the above experiment only took on integral values equal to the energy of the photons that originally struck the surface of the glass indicates that their energy is not transmitted by a wave but by a particle.

This shows that in a quantum environment a photon can either be a particle or a wave. However, our senses tell us objects such as photons cannot be both a particle and wave at the same time.

Yet as mentioned earlier we may be able to merge or integrate these two realities and determine the fundamental component of "THE reality"  by viewing them, as mentioned earlier in terms four *spatial* dimension instead of four dimensions space-time.

For example in the article "Why is energy/mass quantized?" Oct. 10, 2007 it was shown one can derive both the wave and particle properties of objects and a photon by extrapolating the physical image of a wave in a three-dimensional environment to a matter wave moving on a "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension.  Additionally it showed that all energy must be propagated in these resonant systems.

Briefly it showed the four conditions required for resonance to occur in a classical environment, an object, or substance with a natural frequency, a forcing function at the same frequency as its natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would be meet by a matter wave on a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

The existence of four *spatial* dimensions would give the “surface” of three-dimensional space (the substance) the ability to oscillate spatially with respect to a fourth *spatial* dimension thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital.  This would force the "surface" of a three-dimensional space manifold with respect to a fourth *spatial* dimension to oscillate with the frequency associated with the energy of that event.

Therefore if one extrapolates the physical image of a wave in a three dimensional environment to a fourth *spatial* dimension one could understand how these oscillations in a "surface" of a three-dimensional space manifold would generate the wave properties of objects in a quantum environment.

However we know from observations that tell us resonant system can only have the incremental or discrete energy associated with its fundamental or a harmonic of its fundamental frequency. Similarly the incremental or discrete energies associated with individual photons in Richard Feynman’s experiment could be understood in terms of the physical image of the resonate properties of wave in four *spatial* dimensions. However, one can also describe the physical boundaries of a particle in terms of the wave properties of its resonant structure.

In classical physics, a point on the two-dimensional surface of paper is confined to that surface.  However, that surface can oscillate up or down with respect to three-dimensional space. 

Similarly an object occupying a volume of three-dimensional space would be confined to it however, it could, similar to the surface of the paper oscillate "up" or "down" with respect to a fourth *spatial* dimension.

The confinement of the "upward" and "downward" oscillations of a three-dimension volume with respect to a fourth *spatial* dimension is what defines the spatial boundaries associated with a particle in the article "Why is energy/mass quantized?"

This would allow one to merge or integrate the wave particle duality of a quantum environment into our sensory world by extrapolating, as was show earlier the physical image of wave moving on water to a matter wave moving on the "surface" of a three dimension space manifold with respect to a fourth *spatial* dimension or four dimensional space-time environment because remember, as was also show earlier they are equivalent.  

For example, the wave like interference of photons Richard Feynman’s experiment observed in his experiment would be due to the wave properties of the resonant "system" defined in the article "Why is energy/mass quantized?".

If the distance between the two glass surfaces was equal to half of the wavelength of the resonant "system" associated with a photon, classical wave mechanics tell us the interference of its wave properties would interfere and will, as mentioned earlier yield the energy associated with 0 photons.

 If the distance between two glass surfaces is equal to its wavelength of they will reinforce each other and yield the energy associated with 16 photons.

However, it also tells us the reason the energy variations caused by their interference are quantized and not continuous as wave theory predicts they should is because, as was shown in the article "Why is energy/mass quantized?" the resonant properties of four *spatial* dimensions means that their energy must be propagated through space in the discrete quantized values associated with the fundamental or harmonic of fundamental frequency of four *spatial* dimensions or space-time environment they are occupying.

Yet this also defines reason the wave properties of 8 reflected photons reinforce themselves to create the energy associated with16 photons is because in our sensory environment when two waves in phase interact they will reinforce each other.  Therefore if energy is propagated in discrete quantized values associated with the wavelength or frequency of a resonant system the reinforcement of the wave properties of 8 photons must be carried away in the integral or discreet energies associated with resonant systems of up to 16 photons of the same frequency as those original 8 photons.

This demonstrates how one can project the "structure" of "OUR reality" beyond our sensory environment to explain and understand the quantum world.   It also demonstrates why forming a physical image of a process is so valuable to science because it shows that one can integrate or merge the reality shown to us by our instruments into our sensory reality in terms of "THE reality" of four *spatial* dimension or four dimensional space-time.

It should be remember Einstein’s genius allows us to choose if we want to resolve all paradoxes between the microscopic world of quantum mechanics and the macroscopic world of Relativity either a space-time environment or one consisting of four *spatial* dimension when he defined the geometry of space-time in terms of the constant velocity of light. This interchangeability broadens the environment encompassed by his theories by making them applicable to both the sensory as well as the non sensory time properties of our universe thereby giving us a new perspective on the physical relationship between particles and waves

 Later Jeff

Copyright Jeffrey O’Callaghan 2014


 

The Imagineer’s
Chronicles
Vol. 4 — 2013


 
Paperback
$13.29
E-book
$7.99

Anthology of
The Imagineer’s Chronicles
Vol. 1 thru 4

   
Ebook
$10.50

The Imagineer’s
Chronicles
Vol. 3 — 2012

 
Paperback
$10.96
Ebook
$6.55

 
 

The Imagineer’s
Chronicles
Vol. 2 — 2011
 
Paperback
$8.32
Ebook
$6.57

 

The Reality
of the Fourth
Spatial
Dimension
 
Paperback
$9.77
Ebook

$6.24

The Imagineer’s
Chronicles
2007 thru 2010
 
Paperback
$14.97
Ebook
$7.82

 
     
 

« Previous Articles    
The Imagineer's Chronicles is based on WordPress platform, RSS tech , RSS comments design by Gx3.